Add like
Add dislike
Add to saved papers

Alzheimer-Like Pattern of Hypometabolism Emerges with Elevated Amyloid-β Burden in Down Syndrome.

BACKGROUND: The Down syndrome (DS) population is genetically predisposed to amyloid-β protein precursor overproduction and Alzheimer's disease (AD).

OBJECTIVE: The temporal ordering and spatial association between amyloid-β, glucose metabolism, and gray matter (GM) volume in the DS population can provide insight into those associations in the more common sporadic AD.

METHODS: Twenty-four adults (13 male, 11 female; 39±7 years) with DS underwent [11C]PiB, [18F]FDG, and volumetric MRI scans. Voxel-wise associations between PiB SUVR, FDG SUVR, and GM volume were investigated, with and without individual adjustments for variables of interest.

RESULTS: Positive associations of PiB and age were widespread throughout the neocortex and striatum. Negative associations of FDG and age (frontal, parietal, and temporal cortex) and of GM volume and age (frontal and insular cortex) were observed. PiB and FDG were negatively associated in parietal cortex, after adjustment for GM volume.

CONCLUSIONS: In adults with DS, early amyloid-β accumulation in the striatum is divergent from sporadic AD; however, despite the early striatal amyloid-β, glucose hypometabolism was confined to the typical AD-associated regions, which occurs similarly in autosomal dominant AD. Importantly, the glucose hypometabolism was not explained solely by increased partial volume effect due to GM volume reductions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app