Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Role of CYP4F2, CYP2C19, and CYP1A2 polymorphisms on acenocoumarol pharmacogenomic algorithm accuracy improvement in the Greek population: need for sub-phenotype analysis.

BACKGROUND: We have earlier developed a pharmacogenomic algorithm for acenocoumarol dose prediction in Greek patients that included CYP2C9/VKORC1 genetic information. This study aims at analyzing the potential effect of CYP4F2, CYP2C19, and CYP1A2 gene polymorphisms on acenocoumarol dose requirements and at further improving the Greek-specific pharmacogenomic algorithm.

METHODS: A total of 205 Greek patients taking acenocoumarol (140 who reached and 65 who did not reach stable dose), participants of acenocoumarol EU-PACT trial, were included in the study. CYP4F2, CYP2C19, and CYP1A2 polymorphisms were genotyped by use of the PCR-RFLP method. All patients were previously genotyped for CYP2C9/VKORC1 polymorphisms.

RESULTS: In the pooled sample, CYP4F2, CYP2C19, and CYP1A2 polymorphisms do not affect independently acenocoumarol dose requirements. For CYP4F2, significant effects were found on patients' ability to reach stable dose and on acenocoumarol dose requirements when CYP2C9/VKORC1 sub-phenotypes were analyzed. Specifically, when the patients were stratified according to their CYP2C9/VKORC1 functional bins, in sensitive responders, CYP4F2*3 allele carriers (CYP4F2 *1/*3 and *3/*3 genotypes) were more frequent in the patient group who reached stable dose (p=0.049). Additionally, in CYP2C9 intermediate metabolizers (IMs), after adjusting for age, weight, and VKORC1 genotypes, CYP4F2 genotypes were significantly associated with acenocoumarol stable dose (β: 0.07; 95% CI: 0.006-0.134; p=0.033).

CONCLUSIONS: CYP4F2 gene shows a prominent weak association with acenocoumarol dose requirements. Sub-phenotype analysis is potentially important in determining additional gene polymorphisms that are associated with acenocoumarol dose requirements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app