JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Altered toll-like receptor responsiveness underlies a dominant heritable defect in B cell tolerance in autoimmune New Zealand Black mice.

Systemic lupus erythematosus is a debilitating autoimmune disease in which autoantibodies and autoreactive T cells destroy kidneys and other organs. Disease is clinically and genetically heterogeneous, suggesting that underlying mechanisms vary between patients. We previously used an autoantibody transgenic mouse reporter system to examine the effect of different autoimmune backgrounds on B-cell tolerance, failure of which is a fundamental defect in lupus. We identified a defect consistent with reversible anergy induced by endotoxin stimulation of B cells from Ig transgenic New Zealand Black (NZB) mice. Herein we report that the tolerance defect is revealed by TLR7 and TLR9 as well as TLR4 ligands, with additive effect, and is partially reversed by Mek inhibition. Gene expression analysis reveals significant differences in transcription of multiple TLR pathway genes and ptpn22 in stimulated NZB compared to B6 B cells. Additionally, the defect is detected in Ig transgenic NZB F1 hybrid strains (NZBxNZW)F1 and (B6xNZB)F1. These results implicate an inherited defect wherein NZB anergic B cells maintain coordinated TLR/BCR signaling that permits autoantibody production. Agents targeting these pathways may have therapeutic benefit in the subset of lupus patients that manifest similar defects in B-cell regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app