Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Population Pharmacokinetic- Pharmacodynamic Analysis to Characterize the Effect of Empagliflozin on Renal Glucose Threshold in Patients With Type 1 Diabetes Mellitus.

Sodium glucose cotransporter 2 inhibitors increase urinary glucose excretion (UGE) by lowering the renal threshold for glucose (RTG ). We aimed to quantify the effect of the sodium glucose cotransporter inhibitor empagliflozin on renal glucose reabsorption in patients with type 1 diabetes mellitus (T1DM) using a mechanistic population pharmacokinetic-pharmacodynamic (PK-PD) model and to compare results with analyses in patients with type 2 diabetes mellitus (T2DM). The PK-PD model was developed using data from a randomized phase 2 study in which patients with T1DM received oral once-daily empagliflozin 2.5 mg, empagliflozin 10 mg, empagliflozin 25 mg, or placebo as an adjunct to insulin. The model assumed that UGE was dependent on plasma glucose and renal function and that empagliflozin lowered RTG . The final model was evaluated using visual predictive checks and found to be consistent with observed data. Calculated RTG with placebo was 181 mg/dL, and with empagliflozin (steady state) 1 mg and 2.5 mg was 53.4 mg/dL and 12.5 mg/dL, respectively. Empagliflozin 10 mg and 25 mg yielded negative RTG values, implying RTG was reduced to a negligible value. Although estimated PK-PD parameters were generally comparable between patients with T1DM and patients with T2DM, slight differences were evident, leading to lower RTG and higher UGE in patients with T1DM compared with patients with T2DM. In conclusion, the model provided a reasonable description of UGE in response to administration of empagliflozin and placebo in patients with T1DM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app