Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Cherenkov-excited Multi-Fluorophore Sensing in Tissue-Simulating Phantoms and In Vivo from External Beam Radiotherapy.

Radiation Research 2018 Februrary
In this work, Cherenkov-excited molecular sensing was used to assess the potential for simultaneous quantitative sensing of two NIR fluorophores within tissue-simulating phantoms through spectral separation of signals. Cherenkov emissions induced by external beam gamma photon radiation treatment to tissues/tissue-simulating phantoms were detectable over the 500-900-nm wavelength range. The presence of blood was demonstrated to reduce the integrated intensity of detected Cherenkov emissions by nearly 50%, predominantly at wavelengths below 620 nm. The molecular dyes, IRDye 680RD and IRDye 800CW, have excitation and emission spectra at longer wavelengths than the strongest blood absorption peaks, and also where the intensity of Cherenkov light is at its lowest, so that the emission signal relative to background signal is maximized. Tissue phantoms composed of 1% intralipid and 1% blood were used to simulate human breast tissue, and vials containing fluorophore were embedded in the media, and irradiated with gamma photons for Cherenkov excitation. We observed that fluorescence emissions excited by the Cherenkov signal produced within the phantom could be detected at 5-mm depth into the media within a 0.1-25 μ M fluorophore concentration range. The detected fluorescence signals from these dyes showed linear relationships with radiation doses down to the cGy level. In vivo tests were successful only within the range near a μ M, suggesting that these could be used for metabolic probes in vivo where the local concentrations are near this range.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app