Add like
Add dislike
Add to saved papers

Synthesis and Biological Evaluation of a Degradable Trehalose Glycopolymer Prepared by RAFT Polymerization.

There is a significant need for new biodegradable protein stabilizing polymers. Herein, the synthesis of a polymer with trehalose side chains and hydrolytically degradable backbone esters and its evaluation for protein stabilization and cytotoxicity are described. Specifically, an alkene-containing parent polymer is synthesized by reversible addition-fragmentation chain transfer polymerization, and thiolated trehalose is installed using a radical-initiated thiol-ene reaction. The stabilizing properties of the polymer are investigated by thermally stressing granulocyte colony-stimulating factor (G-CSF), which is expressed and purified using a custom-designed G-CSF fusion protein with a polyhistidine-tagged maltose binding protein. The degradable polymer is shown to stabilize G-CSF to 66% after heating at 40 °C. Poly(5,6-benzo-2-methylene-1,3-dioxepane (BMDO)-co-butyl methacrylate-trehalose) is degraded and its cellular compatibility is investigated. While the polymer is noncytotoxic, cytotoxic effects are observed from the degraded products in fibroblasts and murine myeloblasts. These data provide important information for future use of BMDO-containing trehalose glycopolymers for biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app