Add like
Add dislike
Add to saved papers

Simultaneous bilateral-knee MR imaging.

PURPOSE: To demonstrate and evaluate the scan time and quantitative accuracy of simultaneous bilateral-knee imaging compared with single-knee acquisitions.

METHODS: Hardware modifications and safety testing was performed to enable MR imaging with two 16-channel flexible coil arrays. Noise covariance and sensitivity-encoding g-factor maps for the dual-coil-array configuration were computed to evaluate coil cross-talk and noise amplification. Ten healthy volunteers were imaged on a 3T MRI scanner with both dual-coil-array bilateral-knee and single-coil-array single-knee configurations. Two experienced musculoskeletal radiologists compared the relative image quality between blinded image pairs acquired with each configuration. Differences in T2 relaxation time measurements between dual-coil-array and single-coil-array acquisitions were compared with the standard repeatability of single-coil-array measurements using a Bland-Altman analysis.

RESULTS: The mean g-factors for the dual-coil-array configuration were low for accelerations up to 6 in the right-left direction, and minimal cross-talk was observed between the two coil arrays. Image quality ratings of various joint tissues showed no difference in 89% (95% confidence interval: 85-93%) of rated image pairs, with only small differences ("slightly better" or "slightly worse") in image quality observed. The T2 relaxation time measurements between the dual-coil-array configuration and the single-coil configuration showed similar limits of agreement and concordance correlation coefficients (limits of agreement: -0.93 to 1.99 ms; CCC: 0.97 (95% confidence interval: 0.96-0.98)), to the repeatability of single-coil-array measurements (limits of agreement: -2.07 to 1.96 ms; CCC: 0.97 (95% confidence interval: 0.95-0.98)).

CONCLUSION: A bilateral coil-array setup can image both knees simultaneously in similar scan times as conventional unilateral knee scans, with comparable image quality and quantitative accuracy. This has the potential to improve the value of MRI knee evaluations. Magn Reson Med 80:529-537, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app