Add like
Add dislike
Add to saved papers

Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies.

PeerJ 2017
Symbiotic interactions between insects and bacteria are ubiquitous and form a continuum from loose facultative symbiosis to greatly intimate and stable obligate symbiosis. In blood-sucking insects living exclusively on vertebrate blood, obligate endosymbionts are essential for hosts and hypothesized to supplement B-vitamins and cofactors missing from their blood diet. The role and distribution of facultative endosymbionts and their evolutionary significance as seeds of obligate symbioses are much less understood. Here, using phylogenetic approaches, we focus on the Hippoboscidae phylogeny as well as the stability and dynamics of obligate symbioses within this bloodsucking group. In particular, we demonstrate a new potentially obligate lineage of Sodalis co-evolving with the Olfersini subclade of Hippoboscidae. We also show several likely facultative Sodalis lineages closely related to Sodalis praecaptivus (HS strain) and suggest repeated acquisition of novel symbionts from the environment. Similar to Sodalis , Arsenophonus endosymbionts also form both obligate endosymbiotic lineages co-evolving with their hosts (Ornithomyini and Ornithoica groups) as well as possibly facultative infections incongruent with the Hippoboscidae phylogeny. Finally, we reveal substantial diversity of Wolbachia strains detected in Hippoboscidae samples falling into three supergroups: A, B, and the most common F. Altogether, our results prove the associations between Hippoboscoidea and their symbiotic bacteria to undergo surprisingly dynamic, yet selective, evolutionary processes strongly shaped by repeated endosymbiont replacements. Interestingly, obligate symbionts only originate from two endosymbiont genera, Arsenophonus and Sodalis , suggesting that the host is either highly selective about its future obligate symbionts or that these two lineages are the most competitive when establishing symbioses in louse flies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app