Add like
Add dislike
Add to saved papers

Mechanistic Insights Into Durable Pulmonary Vein Isolation Achieved by Second-Generation Cryoballoon Ablation.

Background: The mechanism explaining the efficacy of cryoballoon ablation (CBA) for atrial fibrillation has not been clarified.

Methods and Results: We compared lesion characteristics between patients in whom pulmonary vein isolation (PVI) was performed by CBA (n=56) and those by contact force (CF)-based RF ablation (n=56). We evaluated the 3-dimensional PV morphology before and after cryoballoon inflation. After PVI, a 3D left atrial voltage map was created. Pacing (10 mA and 2 ms) was performed within the low voltage area from the ablation line, and electrically unexcitable ablated tissue was identified. ATP-provoked dormant conduction after PVI occurred in 9 of the 224 (4%) PVs in the CBA group and in 13 of the 224 (6%) PVs in the CF group (P=0.3935). The inflated balloon stretched the PV from the original PV ostial surface by 7.1±3.5 mm, but at sites with (vs, sites without) residual PV potential/dormant conduction, the extent of the PV distension was reduced (4.0±4.0 mm vs. 7.2±3.4 mm, P<0.0001). The unexcitable ablated tissue around the PVs was significantly wider in CB patients than in CF patients (16.7±5.1 mm vs. 5.3±2.3 mm, P<0.0001).

Conclusions: Use of the cryoballoon significantly distends the PV. Without this extensive distention, PVI may not be successful. CBA seems to yield wide unexcitable ablation zones. These factors seem to explain the durability of CBA lesions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app