JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MiR-145 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells through targeting FoxO1.

In this study, we aimed to investigate the expression of miR-145 before and after hASCs osteogenic differentiation. We also intended to explore the influence of the target relationship between miR-145 and FoxO1 on osteogenic differentiation. Dual-luciferase reporter gene assay and real-time PCR were used to confirm the target relationship between miR-145 and FoxO1. Furthermore, the modulatory effects of miR-145 and FoxO1 on hASCs osteoinductive differentiation were measured by real-time PCR , Western blot, ALP staining, ARS staining, and cell immunofluorescence assay. After osteogenic differentiation, miR-145 was gradually down-regulated, while FoxO1 was up-regulated in hASCs. MiR-145 could directly target FoxO1 3'UTR. FoxO1 was negatively regulated by miR-145. After osteoinductive differentiation, BSP, Ocn, and OPN expression was lowered with the overexpression of miR-145 or the knockdown of FoxO1. Furthermore, ALP and ARS staining assay results showed weakened ALP activity and extracellular matrix calcification. When overexpressing miR-145 and FoxO1 simultaneously, no obvious change in ALP activity and extracellular matrix calcification was seen. MiR-145 could suppress hASCs osteoinductive differentiation by suppressing FoxO1 directly. Impact statement Researching on ASCs was a promising strategy to study osteogenic differentiation. The regulatory role of miR-145 on hASCs osteogenic differentiation remained partially explored. Our study revealed a novel mechanism of the osteogenic differentiation process and suggested that miR-145 and its target gene FoxO1 may be potential targets for the therapy of human osteogenic-related disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app