Add like
Add dislike
Add to saved papers

Efficiency of biogas slurry and Burkholderia phytofirmans PsJN to improve growth, physiology, and antioxidant activity of Brassica napus L. in chromium-contaminated soil.

Contamination of soil is a major problem globally with colligated danger for ecosystem and human health. Chromium (Cr) is a toxic heavy metal and caused harmful effect on growth and development of plants. Phytostabilization reduced the mobility of heavy metals with addition of amendments which can significantly decrease metal solubility in soil. Phytostabilization can be achieved by application of biogas slurry (BGS) and endophytic bacteria as amendments in the contaminated soils. The present study revealed that the Burkholderia phytofirmans PsJN and BGS improved the growth, physiology, and antioxidant activity and reduced Cr uptake under a pot experiment spiked with Cr (20 mg kg-1 soil). The experiment was designed under completely randomized design, four treatments with three replications in normal and Cr-contaminated soil. The inoculation of endophytic bacteria improved the growth and physiology of Brassica. This study showed that the inoculation of endophytic bacteria stabilized the Cr levels in soil and minimized the uptake by the plant shoots and roots in BGS-amended soil. Similarly, activity of antioxidants such as catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and glutathione s-transferase (GST) was decreased to normal with combined treatment of BGS and endophytic bacteria in Cr-stressed soil. Overall, the best results were analyzed by combined treatment of BGS and endophytic bacteria to improve growth, physiology, and antioxidant activity of Brassica and immobilize Cr in soil. Moreover, results emphasized the need to use BGS alone or in combination with endophytic bacteria to optimize crop performance, stabilize Cr concentration, and improve environmental efficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app