Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Synthetic capacity does not predict elasmobranchs' ability to maintain trimethylamine oxide without a dietary contribution.

Trimethylamine oxide (TMAO) is an organic osmolyte and universal protein stabilizer. Its role as a cytoprotectant is particularly important in ureosmotic elasmobranchs that accumulate high levels of urea, a macromolecular perturbant. Feeding is a key component in the turnover and maintenance of these nitrogenous compounds. However, previous studies examining TMAO regulation have been largely completed using starved individuals, when nitrogen balance is altered. Here, under fed conditions, we test the importance of dietary TMAO on long-term maintenance in three elasmobranch species with differing endogenous synthetic capacities. Smoothhounds (Mustelus canis), spiny dogfish (Squalus acanthias), and little skates (Leucoraja erinacea) exhibited species- and tissue-specific differences in their ability to conserve TMAO when fed a low TMAO diet for 56days. Smoothhounds, a species with the capacity for endogenous production, exhibited a decrease in muscle TMAO. Spiny dogfish and little skates, species with no reported ability for synthesis, exhibited decreases in plasma and liver TMAO, respectively. Our findings are contrary to previous starvation studies demonstrating constant levels of TMAO for up to 56days in elasmobranchs. Further, the previously reported synthetic capacity of these species did not correlate with their ability to conserve TMAO and cannot be used to predict a species reliance on dietary contributions for prolonged maintenance. It is possible that all species rely to a degree on absorption of TMAO from the diet or that alternate synthetic or regulatory pathways play a larger role than previously thought.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app