Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A role of SIPL1/SHARPIN in promoting resistance to hormone therapy in breast cancer.

SIPL1 inhibits PTEN function and stimulates NF-κB signaling; both processes contribute to resistance to hormone therapy in estrogen receptor positive breast cancer (ER+ BC). However, whether SIPL1 promotes tamoxifen resistance in BC remains unclear. We report here that SIPL1 enhances tamoxifen resistance in ER+ BC. Overexpression of SIPL1 in MCF7 and TD47 cells conferred tamoxifen resistance. In MCF7 cell-derived tamoxifen resistant (TAM-R) cells, SIPL1 expression was upregulated and knockdown of SIPL1 in TAM-R cells re-sensitized the cells to tamoxifen. Furthermore, xenograft tumors produced by MCF7 SIPL1 cells but not by MCF7 empty vector cells resisted tamoxifen treatment. Collectively, we demonstrated a role of SIPL1 in promoting tamoxifen resistance in BC. Increases in AKT activation and NF-κB signaling were detected in both MCF7 SIPL1 and TAM-R cells; using specific inhibitors and unique SIPL1 mutants to inhibit either pathway significantly reduced tamoxifen resistance. A SIPL1 mutant defective in activating both pathways was incapable of conferring resistance to tamoxifen, showing that both pathways contributed to SIPL1-derived resistance to tamoxifen in ER+ BCs. Using the Curtis dataset of breast cancer (n=1980) within the cBioPortal database, we examined a correlation of SIPL1 expression with ER+ BC and resistance to hormone therapy. SIPL1 upregulation strongly associates with reductions in overall survival in BC patients, particularly in patients with hormone naïve ER+ BCs. Taken together, we provide data suggesting that SIPL1 contributes to promote resistance to tamoxifen in BC cells through both AKT and NF-κB actions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app