Add like
Add dislike
Add to saved papers

Thin-layer chromatography combined with diode laser thermal vaporization inductively coupled plasma mass spectrometry for the determination of selenomethionine and selenocysteine in algae and yeast.

In this work we present a simple and cost-effective approach for the determination of selenium species in algae and yeast biomass, based on a combination of thin-layer chromatography (TLC) with diode laser thermal vaporization inductively coupled plasma mass spectrometry (DLTV ICP MS). Extraction of freeze-dried biomass was performed in 4M methanesulphonic acid and the selenium species were vaporized from cellulose TLC plates employing a continuous-wave infrared diode laser with power up to 4 W using a simple laboratory-built apparatus. Selenomethionine and selenocysteine were quantified with limits of detection 3 μg L-1 in a Se-enriched microalgae Chlorella vulgaris and yeast certified reference material SELM-1. Results delivered by TLC-DLTV ICP MS were consistent with those obtained by a routine coupling of high-performance liquid chromatography (HPLC) to ICP MS. In addition, the TLC approach is capable of analyzing extract containing even undiluted crude hydrolysates that could damage HPLC columns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app