Add like
Add dislike
Add to saved papers

Effects of mechanical stretch on the functions of BK and L-type Ca 2+ channels in vascular smooth muscle cells.

Journal of Biomechanics 2018 January 24
It is well recognized that pathologically increased mechanical stretch plays a critical role in vascular remodeling during hypertension. However, how the stretch modulates the functions of ion channels of vascular smooth muscle cells (VSMCs) remains to be elucidated. Here, we demonstrated the effects of mechanical stretch on the activity of large conductance calcium, voltage-activated potassium (BK) and L-type Ca2+ channels. In comparison with 5% stretch (physiological), 15% stretch (pathological) upregulated the current density of L-type Ca2+ and BK channels as well as the frequency and amplitude of calcium oscillation in VSMCs. 15% stretch also increased the open probability and mean open time of the BK channel compared with 5% stretch. BK and L-type Ca2+ channels participated in the mechanical stretch-modulated calcium oscillation. Our results suggested that during hypertension, pathological stretch altered the activity of BK and L-type Ca2+ channels and manipulated the calcium oscillation of VSMCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app