Add like
Add dislike
Add to saved papers

Relative abundance of mature myostatin rather than total myostatin is negatively associated with bone mineral density in Chinese.

Myostatin is mainly secreted by skeletal muscle and negatively regulates skeletal muscle growth. However, the roles of myostatin on bone metabolism are still largely unknown. Here, we recruited two large populations containing 6308 elderly Chinese and conducted comprehensive statistical analyses to evaluate the associations among lean body mass (LBM), plasma myostatin, and bone mineral density (BMD). Our data revealed that total myostatin in plasma was mainly determined by LBM. The relative abundance of mature myostatin (mature/total) was significantly lower in high versus low BMD subjects. Moreover, the relative abundance of mature myostatin was positively correlated with bone resorption marker. Finally, we carried out in vitro experiments and found that myostatin has inhibitory effects on the proliferation and differentiation of human osteoprogenitor cells. Taken together, our results have demonstrated that the relative abundance of mature myostatin in plasma is negatively associated with BMD, and the underlying functional mechanism for the association is most likely through inhibiting osteoblastogenesis and promoting osteoclastogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app