Add like
Add dislike
Add to saved papers

Coexpression network analysis identifies transcriptional modules associated with genomic alterations in neuroblastoma.

Neuroblastoma is a highly complex and heterogeneous cancer in children. Acquired genomic alterations including MYCN amplification, 1p deletion and 11q deletion are important risk factors and biomarkers in neuroblastoma. Here, we performed a co-expression-based gene network analysis to study the intrinsic association between specific genomic changes and transcriptome organization. We identified multiple gene coexpression modules which are recurrent in two independent datasets and associated with functional pathways including nervous system development, cell cycle, immune system process and extracellular matrix/space. Our results also indicated that modules involved in nervous system development and cell cycle are highly associated with MYCN amplification and 1p deletion, while modules responding to immune system process are associated with MYCN amplification only. In summary, this integrated analysis provides novel insights into molecular heterogeneity and pathogenesis of neuroblastoma. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app