JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A new Drosophila model of Ubiquilin knockdown shows the effect of impaired proteostasis on locomotive and learning abilities.

Ubiquilin (UBQLN) plays a crucial role in cellular proteostasis through its involvement in the ubiquitin proteasome system and autophagy. Mutations in the UBQLN2 gene have been implicated in amyotrophic lateral sclerosis (ALS) and ALS with frontotemporal lobar dementia (ALS/FTLD). Previous studies reported a key role for UBQLN in Alzheimer's disease (AD); however, the mechanistic involvement of UBQLN in other neurodegenerative diseases remains unclear. The genome of Drosophila contains a single UBQLN homolog (dUbqn) that shows high similarity to UBQLN1 and UBQLN2; therefore, the fly is a useful model for characterizing the role of UBQLN in vivo in neurological disorders affecting locomotion and learning abilities. We herein performed a phenotypic and molecular characterization of diverse dUbqn RNAi lines. We found that the depletion of dUbqn induced the accumulation of polyubiquitinated proteins and caused morphological defects in various tissues. Our results showed that structural defects in larval neuromuscular junctions, abdominal neuromeres, and mushroom bodies correlated with limited abilities in locomotion, learning, and memory. These results contribute to our understanding of the impact of impaired proteostasis in neurodegenerative diseases and provide a useful Drosophila model for the development of promising therapies for ALS and FTLD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app