Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cobalt and nickel affect the fluidity of negatively-charged biomimetic membranes.

Elevated levels of the essential trace metals cobalt and nickel are associated with a variety of toxic effects, which are not well-understood, and may involve interactions with the lipid membrane. Fluidity changes of biomimetic lipid membranes upon exposure to CoCl2 and NiCl2 were studied using the fluorescent probe Laurdan, which senses changes in environment polarity. Liposomes were prepared by extrusion in 20 mM HEPES + 100 mM NaCl at pH 7.4. Additionally, dynamic light scattering was used to monitor metal induced size changes of liposomes composed of: phosphatidic acid (PA), cardiolipin (CL), phosphatidylglycerol (PG), phosphatidylserine (PS), and phosphatidylcholine (PC), with saturated and unsaturated acyl chains. Micromolar concentrations of both metals significantly rigidify negatively-charged liposomes and generally increase the melting temperature. Saturated acyl chains showed stronger metal effects in PS and PG, while no clear acyl chain preference was observed in CL and PA systems. The strength of the effect appears to be influenced greatly by both the head group and acyl chain. The rigidifying effects of cobalt were almost always much larger than those of nickel. In addition, size changes and aggregation by both metals was detected in PS or PA liposomes at molar metal/lipid ratios as low as 1/10.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app