Add like
Add dislike
Add to saved papers

Synthesis and evaluation of an 18 F-labeled trifluoroborate derivative of 2-nitroimidazole for imaging tumor hypoxia with positron emission tomography.

2-Nitroimidazole-based hypoxia imaging tracers such as 18 F-FMISO are normally imaged at late time points (several hours post-injection) due to their slow clearance from background tissues. Here, we investigated if a hydrophilic zwitterion-based ammoniomethyl-trifluoroborate derivative of 2-nitroimidazole, 18 F-AmBF3 -Bu-2NI, could have the potential to image tumor hypoxia at earlier time points. AmBF3 -Bu-2NI was prepared in 4 steps. 18 F labeling was conducted via 18 F-19 F isotope exchange reaction, and 18 F-AmBF3 -Bu-2NI was obtained in 14.8 ± 0.4% (n = 3) decay-corrected radiochemical yield with 24.5 ± 5.2 GBq/μmol specific activity and >99% radiochemical purity. Imaging and biodistribution studies in HT-29 tumor-bearing mice showed that 18 F-AmBF3 -Bu-2NI cleared quickly from blood and was excreted via the hepatobiliary and renal pathways. However, the tumor was not visualized in PET images until 3 hours post-injection due to low tumor uptake (0.54 ± 0.13 and 0.19 ± 0.04%ID/g at 1 and 3 hours post-injection, respectively). The low tumor uptake is likely due to the highly hydrophilic motif of ammoniomethyl-trifluoroborate that prevents free diffusion of 18 F-AmBF3 -Bu-2NI across the cell membrane. Our results suggest that highly hydrophilic 18 F-labeled ammoniomethyl-trifluoroborate derivatives might not be suitable for imaging intracellular targets including nitroreductase, a common tumor hypoxia imaging target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app