JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Genetic dissection of cyclic pyranopterin monophosphate biosynthesis in plant mitochondria.

Biochemical Journal 2018 January 32
Mitochondria play a key role in the biosynthesis of two metal cofactors, iron-sulfur (FeS) clusters and molybdenum cofactor (Moco). The two pathways intersect at several points, but a scarcity of mutants has hindered studies to better understand these links. We screened a collection of sirtinol-resistant Arabidopsis thaliana mutants for lines with decreased activities of cytosolic FeS enzymes and Moco enzymes. We identified a new mutant allele of ATM3 ( ABC transporter of the mitochondria 3 ), encoding the ATP-binding cassette transporter of the mitochondria 3 (systematic name ABCB25), confirming the previously reported role of ATM3 in both FeS cluster and Moco biosynthesis. We also identified a mutant allele in CNX2 , cofactor of nitrate reductase and xanthine dehydrogenase 2 , encoding GTP 3',8-cyclase, the first step in Moco biosynthesis which is localized in the mitochondria. A single-nucleotide polymorphism in cnx2-2 leads to substitution of Arg88 with Gln in the N-terminal FeS cluster-binding motif. cnx2-2 plants are small and chlorotic, with severely decreased Moco enzyme activities, but they performed better than a cnx2-1 knockout mutant, which could only survive with ammonia as a nitrogen source. Measurement of cyclic pyranopterin monophosphate (cPMP) levels by LC-MS/MS showed that this Moco intermediate was below the limit of detection in both cnx2-1 and cnx2-2 , and accumulated more than 10-fold in seedlings mutated in the downstream gene CNX5 Interestingly, atm3-1 mutants had less cPMP than wild type, correlating with previous reports of a similar decrease in nitrate reductase activity. Taken together, our data functionally characterize CNX2 and suggest that ATM3 is indirectly required for cPMP synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app