JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biophysical and biological evaluation of optimized stapled peptide inhibitors of the linear ubiquitin chain assembly complex (LUBAC).

Linear ubiquitylation, in which ubiquitin units are covalently linked through N- and C-terminal amino acids, is a unique cellular signaling mechanism. This process is controlled by a single E3 ubiquitin ligase, the linear ubiquitin chain assembly complex (LUBAC), which is composed of three proteins - HOIL-1L, HOIP and SHARPIN. LUBAC is involved in the activation of the canonical NF-κB pathway and has been linked to NF-κB dependent malignancies. In this work, we present HOIP-based stapled alpha-helical peptides designed to inhibit LUBAC through the disruption of the HOIL-1L-HOIP interaction and loss of the functional complex. We find our HOIP peptides to be active LUBAC ubiquitylation inhibitors in vitro, though through interaction with HOIP rather than HOIL. Active peptides were shown to have inhibitory effects on cell viability, reduced NF-κB activity and decreased production of NF-κB related gene products. This work further demonstrates the potential of LUBAC as a therapeutic target and of the use of stapled peptides as inhibitors of protein-protein interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app