Add like
Add dislike
Add to saved papers

Enabling the valorization of guaiacol-based lignin: Integrated chemical and biochemical production of cis,cis-muconic acid using metabolically engineered Amycolatopsis sp ATCC 39116.

Lignin is nature's second most abundant polymer and displays a largely unexploited renewable resource for value-added bio-production. None of the lignin-based fermentation processes so far managed to use guaiacol (2-methoxy phenol), the predominant aromatic monomer in depolymerized lignin. In this work, we describe metabolic engineering of Amycolatopsis sp. ATCC 39116 to produce cis,cis-muconic acid (MA), a precursor of recognized industrial value for commercial plastics, from guaiacol. The microbe utilized a very broad spectrum of lignin-based aromatics, such as catechol, guaiacol, phenol, toluene, p-coumarate, and benzoate, tolerated them in elevated amounts and even preferred them over sugars. As a next step, we developed a novel approach for genomic engineering of this challenging, GC-rich actinomycete. The successful introduction of conjugation and blue-white screening, using β-glucuronidase, enabled tailored genomic modifications within ten days. Successive deletion of two putative muconate cycloisomerases from the genome provided the mutant Amycolatopsis sp. ATCC 39116 MA-2, which accumulated 3.1gL-1 MA from guaiacol within 24h, achieving a yield of 96%. The mutant was found also capable to produce MA from a guaiacol-rich true lignin hydrolysate, obtained from pine through hydrothermal conversion. This provides an important proof-of-concept to successfully coupling chemical and biochemical process steps into a value chain from the lignin polymer to an industrial chemical. In addition, Amycolatopsis sp. ATCC 39116 MA-2 was able to produce 2-methyl MA from o-cresol (2-methyl phenol), which opens possibilities towards polymers with novel architecture and properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app