Add like
Add dislike
Add to saved papers

In Situ Synthetic Functionalization of a Transmembrane Protein Nanopore.

ACS Nano 2018 January 24
Monitoring current flow through a single nanopore has proved to be a powerful technique for the in situ detection of molecular structure, binding, and reactivity. Transmembrane proteins, such as α-hemolysin, provide particularly attractive platforms for nanopore sensing applications due to their atomically precise structures. However, many nanopore applications require the introduction of functional groups to tune selectivity. To date, such modifications have required genetic modification of the protein prior to functionalization. Here we demonstrate the in situ synthetic modification of a wild-type α-hemolysin nanopore embedded in a membrane. We show that reversible dynamic covalent iminoboronate formation and the resulting changes in the ion current flowing through an individual nanopore can be used to map the reactive behavior of lysine residues within the nanopore channel. Crucially, the modification of lysine residues located outside the nanopore channel was found not to affect the stability or utility of the nanopore. Finally, knowledge of the reactivity patterns enabled the irreversible functionalization of a single, assignable lysine residue within the nanopore channel. The approach constitutes a simple, generic tool for the rapid, in situ synthetic modification of protein nanopores that circumvents the need for prior genetic modification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app