Add like
Add dislike
Add to saved papers

Nanoscale Phase Evolution during Continuum Decomposition of Fe-Cr Alloys.

Materials 2017 December 16
The continuum decomposition of the Fe-Cr alloys from initial phase separation to steady-state coarsening with concentrations varying from 25 at % Cr and 30 at % Cr to 33 at % Cr aged at 750 K was studied by utilizing three-dimensional phase-field simulations. The dynamic stages of separation of nanoscale Cr-enriched α' phase were distinguished by the evolution of the volume fraction, particle number density and the average particle radius of the α' phase. The stage of steady-state coarsening was characterized with an equilibrium volume fraction and decreasing particle number density. The coarsening rate constant by linear fitting of the cube of average radius and aging time shows an increase with the increasing Cr concentration. The time exponents decrease from the growth and coarsening stage to the steady-state coarsening stage and show a dependence on the particles number density at different concentrations. The quantitative evolutions of α' phase via nucleation growth and spinodal decomposition are theoretically helpful for understanding the microstructure evolution with aging time in Fe-Cr alloys.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app