Add like
Add dislike
Add to saved papers

Bis(dioxaborine) Dyes with Variable π-Bridges: Towards Two-Photon Absorbing Fluorophores with Very High Brightness.

Bis(dioxaborine) dyes of the A-π-A format (A: acceptor, π: conjugated bridge) were prepared and photophysically characterized. The best performing dyes feature (a) visible-light absorption (>400 nm), (b) high molar absorption coefficients (up to 70000 m-1  cm-1 ), (c) Stokes shifts in the range of ca. 2500-5800 cm-1 , and (d) strong fluorescence emission with quantum yields of up to 0.74. This yields very bright-emitting dyes for one-photon excitation. However, the most intriguing feature of the dyes is their strong two-photon absorption. This was achieved by means of increased π-conjugation in the phenylene or phenylene-thiophene bridges through the variation of the conjugation length and rigidity. This provided two-photon absorption cross sections of up to 2800 GM (1 Goeppert-Mayer (GM)=10-50  cm4  s photon-1 ). Considering the mentioned high fluorescence quantum yields, exceptionally bright-emitting A-π-A two-photon absorbing dyes with low molecular mass are obtained. Time-dependent density-functional theory calculations corroborated the experimental results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app