JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pediatric tolerogenic DCs expressing CD4 and immunoglobulin-like transcript receptor (ILT)-4 secrete IL-10 in response to Fc and adenosine.

We characterized a novel population of tolerogenic myeloid dendritic cells (tmDCs) defined as CD11c+ CD11b+ CD14+ CD4+ and immunoglobulin-like transcript receptor (ILT)-4+ that are significantly more abundant in the circulation of infants and young children than in adults. TmDCs secrete the immunosuppressive lymphokine interleukin (IL)-10 when stimulated with the heavy constant region of immunoglobulins (Fc) and express high levels of the adenosine A2A receptor (A2A R), which, when activated by adenosine, inhibits the release of pro-inflammatory cytokines from most immune cells. Here we show that stimulation of the A2A R on tmDCs by regadenoson or N-ethylcarboxamidoadenosine (NECA) rapidly increases cyclic AMP accumulation and enhances IL-10 production under Fc stimulatory conditions. In co-culture experiments, tmDCs inhibit the differentiation of naïve T cells to a pro-inflammatory phenotype. In conclusion, although DCs are classically viewed as antigen presenting cells that activate T cells, we show an independent role of tmDCs in pediatric immune regulation that may be important for suppressing T cell responses to neoantigens in infants and young children.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app