Add like
Add dislike
Add to saved papers

Multiple target-based pharmacophore design from active site structures.

Health care systems have benefitted from rational drug discovery processes like vHTS, virtual high throughput screening pharmacophores and quantitative structure-activity relationships, and many challenges have been explored using such techniques: decisions on specificity and selectivity are made after screening millions of molecules for multiple targets. Recent challenges in drug research emphasize the design of drugs that bind with more than one target of interest (multi-target) and do not bind with undesirable targets. This work attempts to use a three-dimensional interaction profile of the active site of a class of proteins, identify selective positions for the binding of functional groups, called features, and develop ensembles of multi-targeted pharmacophores that retain specificity and selectivity. The goal of this study is to develop multi-target pharmacophores by computational methods using protein structures alone to guide the discovery of novel inhibitors of plasmepsins, displaying selectivity over their human homologs, cathepsin D and pepsin. The development of such novel tools is attempted using a combination of different approaches such as the molecular interaction field, clique graph and inductive logic programming to identify and compare specific and selective complementary features. The identification of selective combinations of features has resulted in the design of multi-featured specific and selective pharmacophores that are validated using antimalarial compounds in ChEMBL that are known for their anti-plasmepsin II activity. This novel method is computationally less intensive and is applicable to any known class of target structures for finding specific and selective binders simultaneously.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app