Add like
Add dislike
Add to saved papers

Magnetic-Patchy Janus Colloid Surfactants for Reversible Recovery of Pickering Emulsions.

We present a straightforward and robust method for the synthesis of Janus colloid surfactants with distinct amphiphilicity and magnetic responsiveness. To this end, hydroxyl-functionalized amphiphilic Janus microparticles (JMPs) are synthesized by seeded monomer swelling and subsequent photopolymerization. By incorporating controlled amounts of hydroxyl groups on poly(styrene-co-vinyl alcohol) seed particles, we adjust the interfacial tension between the seed polymer and the poly(tetradecyl acrylate) secondary polymer (γ13 ). From theoretical and experimental observations, we verify that when γ13 is tuned to ∼8.5 mN/m in a medium with controlled solvency, which corresponds to a 0.6 volume fraction of ethanol in water, the particles bicompartmentalize to form oval or ellipsoidal JMPs with controllable bulb dimensions. We also show that bulb site-specific patching of magnetic nanoparticles (NPs) can be achieved using the electrostatic interaction between the polyethylenimine-coated bulb surface and the polyvinylpyrrolidone-stabilized Fe2 O3 NPs. Finally, we demonstrate that our magnetic-patchy JMPs can assemble at the oil-water interface, enabling magnetic-responsive reversible recovery of Pickering emulsions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app