Add like
Add dislike
Add to saved papers

Ca 2+ -CaMKKβ pathway is required for adiponectin-induced secretion in rat submandibular gland.

Adiponectin functions as a promoter of saliva secretion in rat submandibular gland via activation of adenosine monophosphate-activated protein kinase (AMPK) and increased paracellular permeability. Ca2+ mobilization is the primary signal for fluid secretion in salivary acinar cells. However, whether intracellular Ca2+ mobilization is involved in adiponectin-induced salivary secretion is unknown. Here, we found that full-length adiponectin (fAd) increased intracellular Ca2+ and saliva secretion in submandibular glands. Pre-perfusion with ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) combined with thapsigargin (TG), an endoplasmic reticulum Ca2+ -ATPase inhibitor, abolished fAd-induced salivary secretion, AMPK phosphorylation, and enlarged tight junction (TJ) width. Furthermore, in cultured SMG-C6 cells, co-pretreatment with EGTA and TG suppressed fAd-decreased transepithelial electrical resistance and increased 4-kDa FITC-dextran flux responses. Moreover, fAd increased phosphorylation of calcium/calmodulin-dependent protein kinase (CaMKKβ), a major kinase that is activated by elevated levels of intracellular Ca2+ , but not liver kinase B1 phosphorylation. Pre-perfusion of the isolated gland with STO-609, an inhibitor of CaMKKβ, abolished fAd-induced salivary secretion, AMPK activation, and enlarged TJ width. CaMKKβ shRNA suppressed, whereas CaMKKβ re-expression rescued fAd-increased paracellular permeability. Taken together, these results indicate that adiponectin induced Ca2+ modulation in rat submandibular gland acinar cells. Ca2+ -CaMKKβ pathway is required for adiponectin-induced secretion through mediating AMPK activation and increase in paracellular permeability in rat submandibular glands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app