Add like
Add dislike
Add to saved papers

Therapeutic angiogenesis by local sustained release of microRNA-126 using poly lactic-co-glycolic acid nanoparticles in murine hindlimb ischemia.

OBJECTIVE: Recent studies demonstrate that microRNAs show promising potential, including angiogenesis, in therapeutic intervention. MicroRNA-126 (miR-126) is reported to regulate angiogenesis by blocking Sprouty-related EVH1 domain-containing protein 1 (SPRED1), an endogenous inhibitor of vascular endothelial cell growth factor. In this study, we investigated the angiogenic effects of the sustained release of miR-126 loaded with poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) in a murine hindlimb ischemia model.

METHODS: We induced mice hindlimb ischemia through femoral artery excision. We randomly assigned the mice to two groups and performed an intramuscular injection of miR-126-loaded PLGA NPs (miR-126) or scrambled miR-loaded PLGA NPs (control) shortly after induction of ischemia.

RESULTS: The miR-126 expression levels in the ischemic limb at 3 days after treatment were significantly higher in mice treated with miR-126-loaded PLGA NPs than in those with scrambled miR, indicating the fair efficiency of local miR transduction (control vs miR-126: 0.33 ± 0.12 vs 0.74 ± 0.42; P < .05; n = 6). Laser Doppler perfusion imaging revealed that limb blood flow in mice treated with miR-126-loaded PLGA NPs was significantly higher at 14 days after treatment (sham vs control vs miR-126: 0.62 ± 0.09 vs 0.58 ± 0.05 vs 0.72 ± 0.07; P < .001; n = 12). Immunohistochemical analysis indicated that CD31-positive cell density and α-smooth muscle actin-positive vessel density were significantly higher in miR-126-treated mice (control vs miR-126: 0.33 ± 0.12 vs 0.74 ± 0.42; P < .05; n = 6). SPRED1 messenger RNA expression levels were significantly lower in miR-126-treated mice (control vs miR-126: 1.00 ± 0.05 vs 0.81 ± 0.07; P < .05; n = 6). Western blotting indicated that protein levels of pERK/ERK mediated by SPRED1 were significantly higher in miR-126-treated mice (control vs miR-126: 0.29 ± 0.10 vs 0.54 ± 0.21; P < .05; n = 6).

CONCLUSIONS: This study suggests that sustained release of miR-126-loaded PLGA NPs might be an effective method in therapeutic angiogenesis for hindlimb ischemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app