Add like
Add dislike
Add to saved papers

FE analysis of surface acoustic wave transmission in composite piezoelectric wedge structures.

Ultrasonics 2018 March
The paper numerically investigates the transmission of harmonic surface acoustic waves (SAWs) across the perfectly bonded and perfectly sliding contacts between two 90°-wedges, at least one of which possessing piezoelectric properties. The finite element method in frequency domain is used. The structures are constructed of lithium niobate, fused quartz, silicon and gallium arsenide. The SAW is always incident from lithium niobate. The dependences of the transmission coefficient on the combination of materials and the orientation of the lithium niobate, as well as on the height of the step at the interface between the two parts of the structure are computed and analyzed. This step can appear in the process of fabrication of the composite substrate. The obtained results demonstrate that SAWs are able to transmit fairly efficiently across a wedge-like contact. Therefore such structures can be useful, in particular, in cases when it is advantageous to generate a SAW in one strongly piezoelectric material and observe its action, e.g., due to the transmitted surface normal displacement in another material like in SAW-driven microfluidics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app