Add like
Add dislike
Add to saved papers

Electron-Phonon Coupling Constant of Metallic Overlayers from Specular He Atom Scattering.

He atom scattering has been shown to be a sensitive probe of electron-phonon interaction properties at surfaces. Here it is shown that measurements of the thermal attenuation of the specular He atom diffraction peak (the Debye-Waller effect) can determine the electron-phonon coupling constant, λ, for ultrathin films of metal overlayers on various close-packed metal substrates. Values of λ obtained for single and multiple monolayers of alkali metals, and for Pb layers on Cu(111), extrapolated to large thicknesses, agree favorably with known bulk values. This demonstrates that He atom scattering can measure the electron-phonon coupling strength as a function of film thickness on a layer-by-layer basis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app