Add like
Add dislike
Add to saved papers

Electrochemical Oxidation of Chlorine-Doped Co(OH) 2 Nanosheet Arrays on Carbon Cloth as a Bifunctional Oxygen Electrode.

The primary challenge of developing clean energy conversion/storage systems is to exploit an efficient bifunctional electrocatalyst both for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with low cost and good durability. Here, we synthesized chlorine-doped Co(OH)2 in situ grown on carbon cloth (Cl-doped Co(OH)2 ) as an integrated electrode by a facial electrodeposition method. The anodic potential was then applied to the Cl-doped Co(OH)2 in an alkaline solution to remove chlorine atoms (electro-oxidation (EO)/Cl-doped Co(OH)2 ), which can further enhance the electrocatalytic activity without any thermal treatment. EO/Cl-doped Co(OH)2 exhibits a better performance both for ORR and OER in terms of activity and durability because of the formation of a defective structure with a larger electrochemically active surface area after the electrochemical oxidation. This approach provides a new idea for introducing defects and developing active electrocatalyst.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app