Add like
Add dislike
Add to saved papers

Trapping Structural Coloration by a Bioinspired Gyroid Microstructure in Solid State.

ACS Nano 2018 January 24
In theory, gyroid photonic crystals in butterfly wings exhibit advanced optical properties as a result of their highly interconnected microstructures. Because of the difficulties in synthesizing artificial gyroid materials having periodicity corresponding to visible wavelengths, human-made visible gyroid photonic crystals are still unachievable by self-assembly. In this study, we develop a physical approach-trapping of structural coloration (TOSC)-through which the visible structural coloration of an expanded gyroid lattice in a solvated state can be preserved in the solid state, thereby allowing the fabrication of visible-wavelength gyroid photonic crystals. Through control over the diffusivity and diffusive distance for solvent evaporation, the single-molecular-weight gyroid block copolymer photonic crystal can exhibit desired structural coloration in the solid state without the need to introduce any additives, namely, evapochromism. Also, greatly enhanced reflectivity is observed arising from the formation of porous gyroid nanochannels, similar to those in butterfly wings. As a result, TOSC facilitates the fabrication of the human-made solid gyroid photonic crystal featuring tunable and switchable structural coloration without the synthesis to alter the molecular weight. It appears to be applicable in the fields of optical communication, energy, light-emission, sensors, and displays.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app