Add like
Add dislike
Add to saved papers

Improvement of high-power laser performance for super-smooth optical surfaces using electrorheological finishing technology.

Applied Optics 2017 December 11
Laser-induced damage threshold (LIDT) is a key parameter for optical components heavily influenced by the surface roughness in high-power laser uses. Present polishing technologies often bring about directional micro waviness to the optical surfaces due to path effect. Roughness features of a K9 glass surface were studied in this paper. A new evaluating restriction for power spectral density specification was established, and the off-specification frequency contents were found out. Then the electromagnetic simulation of light field modulation was carried out, and the field enhancement factor reached 12.04, verifying the impact of these contents on the laser damage performance of optical components. To restrain the modulation effect by the textures, electrorheological finishing (ERF) technology was proposed, and the processing was undertaken on the K9 surface. Roughness data converged to minimal Ra 1.00 nm, and the angular spectrum decreased in expected ranges. ERF proved to be effective in eliminating the directional textures and restraining the light intensity modulation of the textures. As a result, the LIDTs of optical components can be improved by ERF processing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app