Add like
Add dislike
Add to saved papers

Spatial coherence of fields from generalized sources in the Fresnel regime.

Analytic expressions of the spatial coherence of partially coherent fields propagating in the Fresnel regime in all but the simplest of scenarios are largely lacking, and calculation of the Fresnel transform typically entails tedious numerical integration. Here, we provide a closed-form approximation formula for the case of a generalized source obtained by modulating the field produced by a Gauss-Shell source model with a piecewise constant transmission function, which may be used to model the field's interaction with objects and apertures. The formula characterizes the coherence function in terms of the coherence of the Gauss-Schell beam propagated in free space and a multiplicative term capturing the interaction with the transmission function. This approximation holds in the regime where the intensity width of the beam is much larger than the coherence width under mild assumptions on the modulating transmission function. The formula derived for generalized sources lays the foundation for the study of the inverse problem of scene reconstruction from coherence measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app