Add like
Add dislike
Add to saved papers

Electronic properties of topological insulator candidate CaAgAs.

The topological phases of matter provide the opportunity to observe many exotic properties, such as the existence of 2D topological surface states in the form of Dirac cones in topological insulators and chiral transport through the open Fermi arc in Weyl semimetals. However, these properties affect the transport characteristics and, therefore, may be useful for applications only if the topological phenomena occur near the Fermi level. CaAgAs is a promising candidate for which the ab initio calculations predict line-nodes at the Fermi energy. However, the compound transforms into a topological insulator on considering spin-orbit interaction. In this study, we investigated the electronic structure of CaAgAs with angle-resolved photoemission spectroscopy (ARPES), ab initio calculations, and transport measurements. The results from ARPES show that the bulk valence band crosses the Fermi energy at the Γ-point. The measured band dispersion matches the ab initio calculations closely when shifting the Fermi energy in the calculations by  -0.5 eV. The ARPES results are in good agreement with transport measurements, which show abundant p-type carriers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app