Add like
Add dislike
Add to saved papers

Minimal Physiologically Based Pharmacokinetic and Drug-Drug-Disease Interaction Model of Rivaroxaban and Verapamil in Healthy and Renally Impaired Subjects.

Current dosing recommendations for rivaroxaban advocate dosage reduction in patients with moderate to severe renal impairment and avoidance of concomitant strong inhibitors of CYP3A or P-glycoprotein. However, rivaroxaban dosing in patients with mild renal impairment taking concomitant moderate inhibitors of CYP3A and P-glycoprotein is not addressed. To quantify the impacts of concomitant verapamil administration and renal impairment on rivaroxaban pharmacokinetics, a minimal physiologically based pharmacokinetic model system was developed and used to evaluate potential increases in rivaroxaban exposure and the consequent increase in risk of major bleeding. Data from a phase 1, drug-drug interaction study were used to qualify the minimal physiologically based pharmacokinetic model system. Model-based simulations indicate that coadministration of rivaroxaban with verapamil substantially increases rivaroxaban exposure across all renal function categories, resulting in an exponential increase in bleeding risk. Reduction of the daily rivaroxaban dose to 10 to 15 mg reduces the major bleeding risk below the designated 4.5% threshold in the majority of patients with normal or mildly impaired renal function. A reduction to 10 mg daily in patients with moderate to severe renal impairment provides additional risk reduction so that 90% of those patients fall below the 4.5% threshold. A risk threshold of 4.5% was selected because it is the median predicted risk in patients treated concomitantly with ketoconazole, which is contraindicated for use with rivaroxaban. Patients taking both rivaroxaban and verapamil should take a reduced daily dose of rivaroxaban to minimize bleeding risk.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app