Add like
Add dislike
Add to saved papers

Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics.

We discuss spin injection and spin valves, which are based on organic and biomolecules, that offer the possibility to overcome some of the limitations of solid-state devices, which are based on ferromagnetic metal electrodes. In particular, we discuss spin filtering through bacteriorhodopsin in a solid state biomolecular spin valve that is based on the chirality induced spin selectivity (CISS) effect and shows a magnetoresistance of ∼2% at room temperature. The device is fabricated using a layer of bacteriorhodopsin (treated with n-octyl-thioglucoside detergent: OTG-bR) that is adsorbed on a cysteamine functionalized gold electrode and capped with a magnesium oxide layer as a tunneling barrier, upon which a Ni top electrode film is placed and used as a spin analyzer. The bR based spin valves show an antisymmetric magnetoresistance response when a magnetic field is applied along the direction of the current flow, whereas they display a positive symmetric magnetoresistance curve when a magnetic field is applied perpendicular to the current direction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app