Add like
Add dislike
Add to saved papers

First evidence of the conversion of paracetamol to AM404 in human cerebrospinal fluid.

Paracetamol is arguably the most commonly used analgesic and antipyretic drug worldwide, however its mechanism of action is still not fully established. It has been shown to exert effects through multiple pathways, some actions suggested to be mediated via N-arachidonoylphenolamine (AM404). AM404, formed through conjugation of paracetamol-derived p-aminophenol with arachidonic acid in the brain, is an activator of the capsaicin receptor, TRPV1, and inhibits the reuptake of the endocannabinoid, anandamide, into postsynaptic neurons, as well as inhibiting synthesis of PGE2 by COX-2. However, the presence of AM404 in the central nervous system following administration of paracetamol has not yet been demonstrated in humans. Cerebrospinal fluid (CSF) and blood were collected from 26 adult male patients between 10 and 211 minutes following intravenous administration of 1 g of paracetamol. Paracetamol was measured by high-performance liquid chromatography with UV detection. AM404 was measured by liquid chromatography-tandem mass spectrometry. AM404 was detected in 17 of the 26 evaluable CSF samples at 5-40 nmol⋅L-1 . Paracetamol was measurable in CSF within 10 minutes, with a maximum measured concentration of 60 μmol⋅L-1 at 206 minutes. This study is the first to report on the presence of AM404 in human CSF following paracetamol administration. This may represent an important finding in our understanding of paracetamol's mechanism of action, although measured concentrations were far below the previously documented IC50 for this metabolite.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app