Add like
Add dislike
Add to saved papers

MicroRNA-211 promotes non-small-cell lung cancer proliferation and invasion by targeting MxA.

Recent studies have shown that microRNAs play a pivotal role in the pathogenesis of cancer. In our current study, the expression levels of microRNA-211 (miR-211) were measured in human non-small-cell lung cancer (NSCLC) tissues and cell lines. We found that miR-211 expression levels were increased in NSCLC tissues and cell lines and that the overexpression of miR-211 promotes cell proliferation and invasion. Using bioinformatics, we demonstrated that miR-211 binds to the 3'-untranslated region of MxA and overexpression of miR-211 suppresses the expression of MxA at both the transcriptional and translational levels in NSCLC cell lines. Furthermore, knockdown of MxA increased the proliferation and invasion of NSCLC cell lines in vitro. High levels of miR-211 expression were associated with a shorter survival time in patients with NSCLC. Taken together, these results suggest that miR-211 promotes tumor proliferation and invasion by regulating MxA expression in NSCLC. This study provides insights into molecular mechanisms of miR-211-mediated tumorigenesis and oncogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app