Add like
Add dislike
Add to saved papers

A novel transdermal nanoethosomal gel of betahistine dihydrochloride for weight gain control: in-vitro and in-vivo characterization.

BACKGROUND: Betahistine dihydrochloride (BDH) is a histamine analog used to control weight gain, with short elimination half-life and gastric irritation as side effects.

OBJECTIVE: The aim of the current investigation is to formulate and optimize a topical BDH ethosomal gel for weight gain control.

MATERIALS AND METHODS: Box-Behnken design was applied to study the effect of independent variables: phosphatidylcholine (PC), propylene glycol (PG), and ethanol on vesicle size; entrapment efficiency; % drug release; and flux. The morphology and zeta potential of the optimized formulation were evaluated. The % drug release, flux, and pharmacodynamics of the optimized formulation gel were studied.

RESULTS: The size and entrapment efficiency percent had a direct positive relationship with the concentration of PC and negative relationship with ethanol and PG. The % drug release and flux decreased with increasing PC and PG, while ethanol enhanced both responses. Regression modeling indicated a good correlation between dependent and independent variables, where F16 was chosen as the optimized formulation. F16 showed well-defined spherical vesicles and zeta potential of -24 mV, and % release from the gel exceeded 99.5% over 16 h with the flux of 0.28 mg/cm2 /h. Food intake and weight gain of rats were significantly decreased after transdermal application of the BDH ethosomal gel when compared with control, placebo, and BDH gel. The histopathological findings proved the absence of inflammation and decrease in adipose tissue.

CONCLUSION: Results obtained showed a significant, sustained transdermal absorption of BDH ethosomal gel and, consequently, a decrease in food intake and weight gain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app