Add like
Add dislike
Add to saved papers

Unsaturated Squalene Content in Emulsion Vaccine Adjuvants Plays a Crucial Role in ROS-Mediated Antigen Uptake and Cellular Immunity.

Molecular Pharmaceutics 2018 Februrary 6
Emulsion-based adjuvants have been demonstrated to be an effective tool in increasing vaccine efficacy. Here, we aimed to launch a mechanistic study on how emulsion adjuvants interact with immune cells and to elucidate the roles of the core oil in vaccine immunogenicity. Our results showed that treatment of dendritic cells (DCs) and splenocytes with a squalene-based emulsion (referred as SqE) induced reactive oxidative species (ROS) production and resulted in an increase in apoptotic and necrotic cells in a concentration- and time-dependent manner. Furthermore, DCs cocultured with cellular debris of SqE-pretreated splenocytes resulted in a higher level of ovalbumin (OVA) antigen uptake by DCs than those cocultured with untreated splenocytes. Interestingly, the potency was rather attenuated when splenocytes were pretreated with N-acetyl-cysteine, an antioxidant. Notably, SqE possesses a high impact on eliciting ROS-mediated antigen uptake compared with a squalane-based emulsion (SqA). Concordantly, immunogenicity studies have shown that SqE is better able than SqA to activate antigen-presenting cells, and to enhance antigen-specific T-cell immunity. Taken together, our results show that unsaturated squalene oil cored within emulsions plays a crucial role in ROS-mediated antigen uptake and cellular immunity, providing a basis for the design and development of vaccine adjuvant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app