Add like
Add dislike
Add to saved papers

Comparison of MOLLI, shMOLLLI, and SASHA in discrimination between health and disease and relationship with histologically derived collagen volume fraction.

Aims: To determine the bioequivalence of several T1 mapping sequences in myocardial characterization of diffuse myocardial fibrosis.

Methods and results: We performed an intra-individual sequence comparison of three types of T1 mapping sequences [MOdified Look-Locker Inversion recovery (MOLLI), Shortened MOdified Look-Locker Inversion recovery ((sh)MOLLI), and SAturation recovery single-SHot Acquisition (SASHA)]. We employed two model diseases of diffuse interstitial fibrosis [patients with non-ischaemic dilated cardiomyopathy (NIDCM), n = 32] and aortic stenosis [(AS), n = 25)]. Twenty-six healthy individuals served as controls. Relationship with collagen volume fraction (CVF) was assessed using endomyocardial biopsies (EMB) intraoperatively in 12 AS patients. T2 mapping (GraSE) was also performed. Myocardial native T1 with MOLLI and shMOLLI showed, firstly, an excellent discriminatory accuracy between health and disease [area under the curves (P-value): 0.94 (0.88-0.99); 0.87 (0.79-0.94); 0.61 (0.49-0.72)], secondly, relationship between histological CVF [native T1 MOLLI vs. shMOLLI vs. SASHA: r = 0.582 (P = 0.027), r = 0.524 (P = 0.046), r = 0.443 (P = 0.150)], and thirdly, with native T2 [r = 0.628(P < 0.001), r = 0.459 (P = 0.003), r = 0.211 (P = 0.083)]. The respective relationships for extracellular volume fraction with CVF [r = 0.489 (P = 0.044), r = 0.417 (0.071), r = 0.353 (P = 0.287)] were significant for MOLLI, but not other sequences. In AS patients, native T2 was significantly higher compared to controls, and associated with levels of C-reactive protein and troponin.

Conclusion: T1 mapping sequences differ in their bioequivalence for discrimination between health and disease as well as associations with diffuse myocardial fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app