JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light.

Biodegradation 2018 April
In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app