Add like
Add dislike
Add to saved papers

Nitric oxide modulates the responses of osteoclast formation to static magnetic fields.

Nitric oxide (NO) is involved in osteoclast differentiation. Our previous studies showed that static magnetic fields (SMFs) could affect osteoclast differentiation. The inhibitory effects of 16 T of high SMF (HiMF) on osteoclast differentiation was correlated with increased production of NO. We raised the hypothesis that NO mediated the regulatory role of SMFs on osteoclast formation. In this study, 500 nT of hypomagnetic field (HyMF), 0.2 T of moderate SMF (MMF) and 16 T of high SMF (HiMF) were utilized as SMF treatment. Under 16 T, osteoclast formation was markedly decreased with enhanced NO synthase (NOS) activity, thus producing a high level of NO. When treated with NOS inhibitor N-Nitro-L-Arginine Methyl Ester (L-NAME), NO production could be inhibited, and osteoclast formation was restored to control group level in a concentration-dependent manner. However, 500 nT and 0.2 T increased osteoclast formation with decreased NOS activity and NO production. When treated with NOS substrate L-Arginine (L-Arg) or NO donor sodium nitroprusside (SNP), the NO level in the culture medium was obviously elevated, thus inhibiting osteoclast differentiation in a concentration-dependent manner under 500 nT or 0.2 T. Therefore, these findings indicate that NO mediates the regulatory role of SMF on osteoclast formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app