Add like
Add dislike
Add to saved papers

Characterization of the B-Center Defect in Diamond through the Vibrational Spectrum: A Quantum-Mechanical Approach.

The B-center in diamond, which consists of a vacancy whose four first nearest-neighbors are nitrogen atoms, has been investigated at the quantum-mechanical level with an all-electron Gaussian-type basis set, hybrid functionals, and the periodic supercell approach. To simulate various defect concentrations, four cubic supercells have been considered, containing (before the creation of the vacancy) 64, 216, 512, and 1000 atoms, respectively. Whereas the B-center does not affect the Raman spectrum of diamond, several intense peaks appear in the IR spectrum, which should permit us to identify this defect. It turns out that of the seven peaks proposed by Sutherland in 1954, located at 328, 780, 1003, 1171, 1332, 1372, and 1426 cm-1 , and frequently mentioned as fingerprints of the B center, the first one and the last three do not appear in the simulated spectrum at any concentration. The graphical animation of the modes confirms the attribution of the remaining three and also permits investigation of the nature of the full set of modes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app