Add like
Add dislike
Add to saved papers

Sphingosine 1-Phosphate Receptor 1 Modulates CNTF-Induced Axonal Growth and Neuroprotection in the Mouse Visual System.

The lack of axonal regeneration and neuronal cell death causes permanent neurological deficits in the injured CNS. Using the classical CNS injury model of optic nerve crush in mice, ciliary neurotrophic factor (CNTF) was found to stimulate retinal ganglion cell (RGC) survival and axonal growth, but in an incomplete fashion. The elucidation of molecular mechanisms impairing CNTF-induced axonal regeneration is paramount to promote visual recovery. In the present study, we sought to evaluate the contribution of sphingosine 1-phosphate receptor 1 (S1PR1) to the neuroprotective and regenerative effects of CNTF. The transduction of retinal cells with adeno-associated viruses (AAV) allowed to activate CNTF/ signal transducer and activator of transcription 3 (Stat3) signaling and to modulate S1PR1 expression in RGCs. Our results showed that CNTF/Stat3 prevented injury-induced S1PR1 downregulation. Silencing S1PR1 in RGCs significantly enhanced CNTF-induced axonal growth in the injured optic nerve. In contrast, RGC survival was markedly decreased when S1PR1 was repressed with viral vectors. The level of phosphorylated Stat3 (P-Stat3), an intracellular mediator of CNTF, did not fluctuate after S1PR1 inhibition and CNTF stimulation. Collectively, these results suggest that S1PR1 acts as a major regulator of retinal neuron survival and restricts the RGC growth response induced by CNTF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app