Add like
Add dislike
Add to saved papers

A Structure Design Method for Reduction of MRI Acoustic Noise.

The acoustic problem of the split gradient coil is one challenge in a Magnetic Resonance Imaging and Linear Accelerator (MRI-LINAC) system. In this paper, we aimed to develop a scheme to reduce the acoustic noise of the split gradient coil. First, a split gradient assembly with an asymmetric configuration was designed to avoid vibration in same resonant modes for the two assembly cylinders. Next, the outer ends of the split main magnet were constructed using horn structures, which can distribute the acoustic field away from patient region. Finally, a finite element method (FEM) was used to quantitatively evaluate the effectiveness of the above acoustic noise reduction scheme. Simulation results found that the noise could be maximally reduced by 6.9 dB and 5.6 dB inside and outside the central gap of the split MRI system, respectively, by increasing the length of one gradient assembly cylinder by 20 cm. The optimized horn length was observed to be 55 cm, which could reduce noise by up to 7.4 dB and 5.4 dB inside and outside the central gap, respectively. The proposed design could effectively reduce the acoustic noise without any influence on the application of other noise reduction methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app